SPS SPS FM Pure 2025 June — Question 1

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2025
SessionJune
TopicGeneralised Binomial Theorem
TypeDirect quotient expansion

  1. The complex number \(z\) satisfies the equation \(z + 2 \mathrm { i } z ^ { * } = 12 + 9 \mathrm { i }\). Find \(z\), giving your answer in the form \(x + \mathrm { i } y\).
    [0pt] [BLANK PAGE]
  2. (a) Use binomial expansions to show that \(\sqrt { \frac { 1 + 4 x } { 1 - x } } \approx 1 + \frac { 5 } { 2 } x - \frac { 5 } { 8 } x ^ { 2 }\)
A student substitutes \(x = \frac { 1 } { 2 }\) into both sides of the approximation shown in part (a) in an attempt to find an approximation to \(\sqrt { 6 }\)
(b) Give a reason why the student should not use \(x = \frac { 1 } { 2 }\)
(c) Substitute \(x = \frac { 1 } { 11 }\) into $$\sqrt { \frac { 1 + 4 x } { 1 - x } } = 1 + \frac { 5 } { 2 } x - \frac { 5 } { 8 } x ^ { 2 }$$ to obtain an approximation to \(\sqrt { 6 }\). Give your answer as a fraction in its simplest form.
[0pt] [BLANK PAGE]