A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Binomial Theorem (positive integer n)
Q1
SPS SPS SM Pure 2022 June — Question 1
6 marks
Exam Board
SPS
Module
SPS SM Pure (SPS SM Pure)
Year
2022
Session
June
Marks
6
Topic
Binomial Theorem (positive integer n)
Type
Direct binomial expansion then integrate
1.
The expression \(\left( 2 + x ^ { 2 } \right) ^ { 3 }\) can be written in the form $$8 + p x ^ { 2 } + q x ^ { 4 } + x ^ { 6 }$$ Demonstrate clearly, using the binomial expansion, that \(p = 12\) and find the value of \(q\).
[0pt] [3 marks]
Hence find \(\int \frac { \left( 2 + x ^ { 2 } \right) ^ { 3 } } { x ^ { 4 } } \mathrm {~d} x\).
[0pt] [3 marks]
[0pt] [BLANK PAGE]
This paper
(16 questions)
View full paper
Q1
6
Q2
Q3
Q4
Q5
Q6
Q7
Q8
4
Q10
Q11
Q12
5
Q13
Q14
Q15
Q16
Q17