Direct binomial expansion then integrate

Questions that ask to expand a single binomial expression and then integrate it directly, without any algebraic manipulation or combination of multiple expansions.

6 questions

OCR C2 2005 June Q6
6
  1. Find the binomial expansion of \(\left( x ^ { 2 } + \frac { 1 } { x } \right) ^ { 3 }\), simplifying the terms.
  2. Hence find \(\int \left( x ^ { 2 } + \frac { 1 } { x } \right) ^ { 3 } \mathrm {~d} x\).
OCR C2 2009 June Q4
4
  1. Find the binomial expansion of \(\left( x ^ { 2 } - 5 \right) ^ { 3 }\), simplifying the terms.
  2. Hence find \(\int \left( x ^ { 2 } - 5 \right) ^ { 3 } \mathrm {~d} x\).
OCR C2 2014 June Q6
6
  1. Find the binomial expansion of \(\left( x ^ { 3 } + \frac { 2 } { x ^ { 2 } } \right) ^ { 4 }\), simplifying the terms.
  2. Hence find \(\int \left( x ^ { 3 } + \frac { 2 } { x ^ { 2 } } \right) ^ { 4 } \mathrm {~d} x\).
AQA C2 2008 June Q7
7
  1. The expression \(\left( 1 + \frac { 4 } { x ^ { 2 } } \right) ^ { 3 }\) can be written in the form $$1 + \frac { p } { x ^ { 2 } } + \frac { q } { x ^ { 4 } } + \frac { 64 } { x ^ { 6 } }$$ By using the binomial expansion, or otherwise, find the values of the integers \(p\) and \(q\).
    1. Hence find \(\int \left( 1 + \frac { 4 } { x ^ { 2 } } \right) ^ { 3 } \mathrm {~d} x\).
    2. Hence find the value of \(\int _ { 1 } ^ { 2 } \left( 1 + \frac { 4 } { x ^ { 2 } } \right) ^ { 3 } \mathrm {~d} x\).
AQA C2 2010 June Q4
4
  1. The expression \(\left( 1 - \frac { 1 } { x ^ { 2 } } \right) ^ { 3 }\) can be written in the form $$1 + \frac { p } { x ^ { 2 } } + \frac { q } { x ^ { 4 } } - \frac { 1 } { x ^ { 6 } }$$ Find the values of the integers \(p\) and \(q\).
    1. Hence find \(\int \left( 1 - \frac { 1 } { x ^ { 2 } } \right) ^ { 3 } \mathrm {~d} x\).
    2. Hence find the value of \(\int _ { \frac { 1 } { 2 } } ^ { 1 } \left( 1 - \frac { 1 } { x ^ { 2 } } \right) ^ { 3 } \mathrm {~d} x\).
      REFERENREFERENCE
      \(\_\_\_\_\)
      \includegraphics[max width=\textwidth, alt={}]{f9a7a4dd-f7fd-4135-8872-2c1270d46a14-5_40_1567_2637_272}
SPS SPS SM Pure 2022 June Q1
6 marks
1.
  1. The expression \(\left( 2 + x ^ { 2 } \right) ^ { 3 }\) can be written in the form $$8 + p x ^ { 2 } + q x ^ { 4 } + x ^ { 6 }$$ Demonstrate clearly, using the binomial expansion, that \(p = 12\) and find the value of \(q\).
    [0pt] [3 marks]
  2. Hence find \(\int \frac { \left( 2 + x ^ { 2 } \right) ^ { 3 } } { x ^ { 4 } } \mathrm {~d} x\).
    [0pt] [3 marks]
    [0pt] [BLANK PAGE]