| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2021 |
| Session | May |
| Topic | Complex Numbers Argand & Loci |
6. A circle \(C\) in the complex plane has equation \(| z - 2 - 5 i | = a\).
The point \(z _ { 1 }\) on \(C\) has the least argument of any point on \(C\), and \(\arg \left( z _ { 1 } \right) = \frac { \pi } { 4 }\).
Prove that \(a = \frac { 3 \sqrt { 2 } } { 2 }\).
[0pt]
[BLANK PAGE]