SPS SPS FM Pure 2021 May — Question 1

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2021
SessionMay
TopicSequences and series, recurrence and convergence

  1. In this question you must show detailed reasoning.
    1. By using partial fractions show that \(\sum _ { r = 1 } ^ { n } \frac { 1 } { r ^ { 2 } + 3 r + 2 } = \frac { 1 } { 2 } - \frac { 1 } { n + 2 }\).
    2. Hence determine the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ^ { 2 } + 3 r + 2 }\).
      [0pt] [BLANK PAGE]
  2. A plane \(\Pi\) has the equation \(\mathbf { r } . \left( \begin{array} { r } 3
    6
    - 2 \end{array} \right) = 15 . C\) is the point \(( 4 , - 5,1 )\). Find the shortest distance between \(\Pi\) and \(C\).
  3. Lines \(l _ { 1 }\) and \(l _ { 2 }\) have the following equations.
    \(l _ { 1 } : \mathbf { r } = \left( \begin{array} { l } 4
    3
    1 \end{array} \right) + \lambda \left( \begin{array} { r } - 2
    4
    - 2 \end{array} \right)\)
    \(l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 5
    2
    4 \end{array} \right) + \mu \left( \begin{array} { r } 1
    - 2
    1 \end{array} \right)\)
    Find, in exact form, the distance between \(l _ { 1 }\) and \(l _ { 2 }\).
    [0pt] [BLANK PAGE]