4.
You are given that the matrix \(\mathbf { A } = \left( \begin{array} { c c c } 1 & 0 & 0
0 & \frac { 2 a - a ^ { 2 } } { 3 } & 0
0 & 0 & 1 \end{array} \right)\), where \(a\) is a positive constant, represents the transformation \(R\) which is a reflection in 3-D.
- State the plane of reflection of R .
- Determine the value of \(a\).
- With reference to R explain why \(\mathbf { A } ^ { 2 } = \mathbf { I }\), the \(3 \times 3\) identity matrix.
[0pt]
[BLANK PAGE]