OCR MEI C3 — Question 9

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
TopicFunction Transformations
TypeMultiple separate transformations

9 Answer parts (i) and (iii) on the insert provided. Fig. 9 shows a sketch graph of \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3f8be5ab-d241-4027-af26-c49da9394adc-4_401_799_488_593} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. On the Insert sketch graphs of
    (A) \(y = 2 \mathrm { f } ( x )\),
    (B) \(y = \mathrm { f } ( - x )\),
    (C) \(y = \mathrm { f } ( x - 2 )\) In each case describe the transformations.
  2. Explain why the function \(y = \mathrm { f } ( x )\) does not have an inverse function.
  3. The function \(\mathrm { g } ( x )\) is defined as follows: $$\mathrm { g } ( x ) = \mathrm { f } ( x ) \text { for } x \geq 0$$ On the Insert sketch the graph of \(y = \mathrm { g } ^ { - 1 } ( x )\).
  4. You are given that \(\mathrm { f } ( x ) = x ^ { 2 } ( x + 2 )\). Calculate the gradient of the curve \(y = \mathrm { f } ( x )\) at the point \(( 1,3 )\).
    Deduce the gradient of the function \(\mathrm { g } ^ { - 1 } ( x )\) at the point where \(x = 3\).
  5. Show that \(\mathrm { g } ( x )\) and \(\mathrm { g } ^ { - 1 } ( x )\) cross where \(x = - 1 + \sqrt { 2 }\). \section*{Insert for question 9.}
  6. (A) On the axes below sketch the graph of \(y = 2 \mathrm { f } ( x )\). Describe the transformation.
    \includegraphics[max width=\textwidth, alt={}, center]{3f8be5ab-d241-4027-af26-c49da9394adc-5_563_1102_484_395} Description:
  7. (B) On the axes below sketch the graph of \(y = \mathrm { f } ( - x )\). Describe the transformation.
    \includegraphics[max width=\textwidth, alt={}, center]{3f8be5ab-d241-4027-af26-c49da9394adc-5_588_1154_1576_404} Description:
  8. (C) On the axes below sketch the graph of \(y = \mathrm { f } ( x - 2 )\). Describe the transformation.
    \includegraphics[max width=\textwidth, alt={}, center]{3f8be5ab-d241-4027-af26-c49da9394adc-6_615_1230_402_406} Description:
  9. The function \(\mathrm { g } ( x )\) is defined as follows: $$\mathrm { g } ( x ) = \mathrm { f } ( x ) \text { for } x \geq 0$$ On the axes below sketch the graph of \(y = g ^ { - 1 } ( x )\).
    \includegraphics[max width=\textwidth, alt={}, center]{3f8be5ab-d241-4027-af26-c49da9394adc-6_677_1356_1567_312}