OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Prove that the product of any three consecutive integers is a multiple of 6 .
Question 2
View details
2
  1. Sketch the graph of \(y = | 2 x - 3 |\).
  2. Hence, or otherwise, solve the inequality \(| 2 x - 3 | < 5\). Illustrate your answer on your graph.
Question 3
View details
3 Differentiate the following functions.
  1. \(\quad y = \left( x ^ { 2 } + 3 \right) ^ { 5 }\)
  2. \(y = \frac { \sin 2 x } { x }\)
Question 4
View details
4 A curve has equation \(y ^ { 2 } = 5 x - 4\).
Find the gradient of the curve at the points where \(x = 8\).
Question 5
View details
5 Given that \(x\) and \(t\) are related by the formula \(x = x _ { 0 } \mathrm { e } ^ { - 3 t }\), show that \(t = \ln \left( \frac { a } { x } \right) ^ { b }\) where \(a\) and \(b\) are to be determined.
Question 6
View details
6
  1. Find \(\int ( 2 x - 3 ) ^ { 7 } \mathrm {~d} x\).
  2. Use the substitution \(u = x ^ { 2 } + 1\), or otherwise, to find \(\int _ { 1 } ^ { 2 } x \left( x ^ { 2 } + 1 \right) ^ { 3 } \mathrm {~d} x\).
Question 7
View details
7 The functions \(f , g\) and \(h\) are defined as follows. $$\mathrm { f } ( x ) = 2 x \quad \mathrm {~g} ( x ) = x ^ { 2 } \quad \mathrm {~h} ( x ) = x + 2$$ Find each of the following as functions of \(x\).
  1. \(\mathrm { f } ^ { 2 } ( x )\),
  2. \(\operatorname { fgh } ( x )\),
  3. \(\mathrm { h } ^ { - 1 } ( x )\).
Question 8
View details
8 A curve has equation \(y = ( x + 2 ) \mathrm { e } ^ { - x }\).
  1. Find the coordinates of the points where the curve cuts the axes.
  2. Find the coordinates of the stationary point, S , on the curve.
  3. By evaluating \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at S , determine whether the stationary point is a maximum or a minimum.
  4. Sketch the curve in the domain \(- 3 < x < 3\).
  5. Find where the normal to the curve at the point \(( 0,2 )\) cuts the curve again.
  6. Find the area of the region bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 3\).
Question 9
View details
9 Answer parts (i) and (iii) on the insert provided. Fig. 9 shows a sketch graph of \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3f8be5ab-d241-4027-af26-c49da9394adc-4_401_799_488_593} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. On the Insert sketch graphs of
    (A) \(y = 2 \mathrm { f } ( x )\),
    (B) \(y = \mathrm { f } ( - x )\),
    (C) \(y = \mathrm { f } ( x - 2 )\) In each case describe the transformations.
  2. Explain why the function \(y = \mathrm { f } ( x )\) does not have an inverse function.
  3. The function \(\mathrm { g } ( x )\) is defined as follows: $$\mathrm { g } ( x ) = \mathrm { f } ( x ) \text { for } x \geq 0$$ On the Insert sketch the graph of \(y = \mathrm { g } ^ { - 1 } ( x )\).
  4. You are given that \(\mathrm { f } ( x ) = x ^ { 2 } ( x + 2 )\). Calculate the gradient of the curve \(y = \mathrm { f } ( x )\) at the point \(( 1,3 )\).
    Deduce the gradient of the function \(\mathrm { g } ^ { - 1 } ( x )\) at the point where \(x = 3\).
  5. Show that \(\mathrm { g } ( x )\) and \(\mathrm { g } ^ { - 1 } ( x )\) cross where \(x = - 1 + \sqrt { 2 }\). \section*{Insert for question 9.}
  6. (A) On the axes below sketch the graph of \(y = 2 \mathrm { f } ( x )\). Describe the transformation.
    \includegraphics[max width=\textwidth, alt={}, center]{3f8be5ab-d241-4027-af26-c49da9394adc-5_563_1102_484_395} Description:
  7. (B) On the axes below sketch the graph of \(y = \mathrm { f } ( - x )\). Describe the transformation.
    \includegraphics[max width=\textwidth, alt={}, center]{3f8be5ab-d241-4027-af26-c49da9394adc-5_588_1154_1576_404} Description:
  8. (C) On the axes below sketch the graph of \(y = \mathrm { f } ( x - 2 )\). Describe the transformation.
    \includegraphics[max width=\textwidth, alt={}, center]{3f8be5ab-d241-4027-af26-c49da9394adc-6_615_1230_402_406} Description:
  9. The function \(\mathrm { g } ( x )\) is defined as follows: $$\mathrm { g } ( x ) = \mathrm { f } ( x ) \text { for } x \geq 0$$ On the axes below sketch the graph of \(y = g ^ { - 1 } ( x )\).
    \includegraphics[max width=\textwidth, alt={}, center]{3f8be5ab-d241-4027-af26-c49da9394adc-6_677_1356_1567_312}