4 Answer this question on the insert provided.
The table shows a partially completed dynamic programming tabulation for solving a minimax problem.
| Stage | State | A ction | Working | M inimax |
| \multirow{3}{*}{1} | 0 | 0 | 4 | 4 |
| 1 | 0 | 3 | 3 |
| 2 | 0 | 2 | 2 |
| \multirow{9}{*}{2} | \multirow{3}{*}{0} | 0 | \(\max ( 6,4 ) = 6\) | \multirow{3}{*}{3} |
| | 1 | \(\max ( 2,3 ) = 3\) | |
| | 2 | \(\max ( 3,2 ) = 3\) | |
| \multirow{3}{*}{1} | 0 | \(\max ( 2,4 ) =\) | \multirow{3}{*}{} |
| | 1 | \(\max ( 4,3 ) =\) | |
| | 2 | \(\max ( 5,2 ) =\) | |
| \multirow{3}{*}{2} | 0 | max(2, | \multirow{3}{*}{} |
| | 1 | max(3, | |
| | 2 | max(4, | |
| \multirow{3}{*}{3} | \multirow{3}{*}{0} | 0 | max(5, | \multirow{3}{*}{} |
| | 1 | max(5, | |
| | 2 | max(2, | |
- On the insert, complete the last two columns of the table.
- State the minimax value and write down the minimax route.
- Complete the diagram on the insert to show the network that is represented by the table.