OCR MEI Further Pure Core 2020 November — Question 11

Exam BoardOCR MEI
ModuleFurther Pure Core (Further Pure Core)
Year2020
SessionNovember
TopicComplex Numbers Argand & Loci

11 In this question you must show detailed reasoning. In Fig. 11, the points \(\mathrm { A } , \mathrm { B } , \mathrm { C } , \mathrm { D } , \mathrm { E }\) and F represent the complex sixth roots of 64 on an Argand diagram. The midpoints of \(\mathrm { AB } , \mathrm { BC } , \mathrm { CD } , \mathrm { DE } , \mathrm { EF }\) and FA are \(\mathrm { G } , \mathrm { H } , \mathrm { I } , \mathrm { J } , \mathrm { K }\) and L respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c2be8838-50ec-4e82-b203-4608ab56c110-5_807_872_443_239} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure}
  1. Write down, in exponential ( \(r \mathrm { e } ^ { \mathrm { i } \theta }\) ) form, the complex numbers represented by the points \(\mathrm { A } , \mathrm { B }\), \(\mathrm { C } , \mathrm { D } , \mathrm { E }\) and F .
  2. When these complex numbers are multiplied by the complex number \(w\), the resulting complex numbers are represented by the points G, H, I, J, K and L. Find \(w\) in exponential form.
  3. You are given that \(\mathrm { G } , \mathrm { H } , \mathrm { I } , \mathrm { J } , \mathrm { K }\) and L represent roots of the equation \(z ^ { 6 } = p\). Find \(p\).