OCR MEI Further Pure Core Specimen — Question 12

Exam BoardOCR MEI
ModuleFurther Pure Core (Further Pure Core)
SessionSpecimen
TopicIntegration using inverse trig and hyperbolic functions

12 In this question you must show detailed reasoning.
  1. Given that \(y = \arctan x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 + x ^ { 2 } }\). Fig. 12 shows the curve \(y = \frac { 1 } { 1 + x ^ { 2 } }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{09d39832-5519-463d-ac7a-5d406ffd7be0-5_444_1435_1371_332} \captionsetup{labelformat=empty} \caption{Fig. 12}
    \end{figure}
  2. Find, in exact form, the mean value of the function \(\mathrm { f } ( x ) = \frac { 1 } { 1 + x ^ { 2 } }\) for \(- 1 \leq x \leq 1\).
  3. The region bounded by the curve, the \(x\)-axis, and the lines \(x = 1\) and \(x = - 1\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find, in exact form, the volume of the solid of revolution generated.