A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Argand & Loci
Q2
OCR MEI Further Pure Core Specimen — Question 2
Exam Board
OCR MEI
Module
Further Pure Core (Further Pure Core)
Session
Specimen
Topic
Complex Numbers Argand & Loci
2
On an Argand diagram draw the locus of points which satisfy \(\arg ( z - 4 \mathrm { i } ) = \frac { \pi } { 4 }\).
Give, in complex form, the equation of the circle which has centre at \(6 + 4 \mathrm { i }\) and touches the locus in part (i).
This paper
(15 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q11
Q12
Q13
Q14
Q15
Q16