OCR FP1 2011 January — Question 7

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionJanuary
TopicLinear transformations

  1. Write down the matrix, \(\mathbf { A }\), that represents a shear with \(x\)-axis invariant in which the image of the point \(( 1,1 )\) is \(( 4,1 )\).
  2. The matrix \(\mathbf { B }\) is given by \(\mathbf { B } = \left( \begin{array} { c c } \sqrt { 3 } & 0
    0 & \sqrt { 3 } \end{array} \right)\). Describe fully the geometrical transformation represented by \(\mathbf { B }\).
  3. The matrix \(\mathbf { C }\) is given by \(\mathbf { C } = \left( \begin{array} { l l } 2 & 6
    0 & 2 \end{array} \right)\).
    (a) Draw a diagram showing the unit square and its image under the transformation represented by \(\mathbf { C }\).
    (b) Write down the determinant of \(\mathbf { C }\) and explain briefly how this value relates to the transformation represented by \(\mathbf { C }\). 8 The quadratic equation \(2 x ^ { 2 } - x + 3 = 0\) has roots \(\alpha\) and \(\beta\), and the quadratic equation \(x ^ { 2 } - p x + q = 0\) has roots \(\alpha + \frac { 1 } { \alpha }\) and \(\beta + \frac { 1 } { \beta }\).
  4. Show that \(p = \frac { 5 } { 6 }\).
  5. Find the value of \(q\). 9 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { r r r } a & - a & 1
    3 & a & 1
    4 & 2 & 1 \end{array} \right)\).
  6. Find, in terms of \(a\), the determinant of \(\mathbf { M }\).
  7. Hence find the values of \(a\) for which \(\mathbf { M } ^ { - 1 }\) does not exist.
  8. Determine whether the simultaneous equations $$\begin{aligned} & 6 x - 6 y + z = 3 k
    & 3 x + 6 y + z = 0
    & 4 x + 2 y + z = k \end{aligned}$$ where \(k\) is a non-zero constant, have a unique solution, no solution or an infinite number of solutions, justifying your answer.
  9. Show that \(\frac { 1 } { r } - \frac { 2 } { r + 1 } + \frac { 1 } { r + 2 } \equiv \frac { 2 } { r ( r + 1 ) ( r + 2 ) }\).
  10. Hence find an expression, in terms of \(n\), for $$\sum _ { r = 1 } ^ { n } \frac { 2 } { r ( r + 1 ) ( r + 2 ) }$$
  11. Show that \(\sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { ( n + 1 ) ( n + 2 ) }\).