OCR FP1 2011 January — Question 9

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionJanuary
Topic3x3 Matrices

9 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { r r r } a & - a & 1
3 & a & 1
4 & 2 & 1 \end{array} \right)\).
  1. Find, in terms of \(a\), the determinant of \(\mathbf { M }\).
  2. Hence find the values of \(a\) for which \(\mathbf { M } ^ { - 1 }\) does not exist.
  3. Determine whether the simultaneous equations $$\begin{aligned} & 6 x - 6 y + z = 3 k
    & 3 x + 6 y + z = 0
    & 4 x + 2 y + z = k \end{aligned}$$ where \(k\) is a non-zero constant, have a unique solution, no solution or an infinite number of solutions, justifying your answer.
  4. Show that \(\frac { 1 } { r } - \frac { 2 } { r + 1 } + \frac { 1 } { r + 2 } \equiv \frac { 2 } { r ( r + 1 ) ( r + 2 ) }\).
  5. Hence find an expression, in terms of \(n\), for $$\sum _ { r = 1 } ^ { n } \frac { 2 } { r ( r + 1 ) ( r + 2 ) }$$
  6. Show that \(\sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { ( n + 1 ) ( n + 2 ) }\).