\(\mathbf { 1 }\) The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by \(\mathbf { A } = \left( \begin{array} { l l } 2 & 5 \end{array} \right) , \mathbf { B } = \left( \begin{array} { l l } 3 & - 1 \end{array} \right)\) and \(\mathbf { C } = \binom { 4 } { 2 }\). Find
2 The complex numbers \(z\) and \(w\) are given by \(z = 4 + 3 \mathrm { i }\) and \(w = 6 - \mathrm { i }\). Giving your answers in the form \(x + \mathrm { i } y\) and showing clearly how you obtain them, find
3 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by \(u _ { 1 } = 2\), and \(u _ { n + 1 } = 2 u _ { n } - 1\) for \(n \geqslant 1\). Prove by induction that \(u _ { n } = 2 ^ { n - 1 } + 1\).
4 Given that \(\sum _ { r = 1 } ^ { n } \left( a r ^ { 3 } + b r \right) \equiv n ( n - 1 ) ( n + 1 ) ( n + 2 )\), find the values of the constants \(a\) and \(b\).
5 Given that \(\mathbf { A }\) and \(\mathbf { B }\) are non-singular square matrices, simplify
$$\mathbf { A B } \left( \mathbf { A } ^ { - 1 } \mathbf { B } \right) ^ { - 1 } .$$
Sketch on a single Argand diagram the loci given by
(a) \(\quad | z | = | z - 8 |\),
(b) \(\quad \arg ( z + 2 \mathrm { i } ) = \frac { 1 } { 4 } \pi\).
Indicate by shading the region of the Argand diagram for which
$$| z | \leqslant | z - 8 | \quad \text { and } \quad 0 \leqslant \arg ( z + 2 i ) \leqslant \frac { 1 } { 4 } \pi$$
Write down the matrix, \(\mathbf { A }\), that represents a shear with \(x\)-axis invariant in which the image of the point \(( 1,1 )\) is \(( 4,1 )\).
The matrix \(\mathbf { B }\) is given by \(\mathbf { B } = \left( \begin{array} { c c } \sqrt { 3 } & 0 0 & \sqrt { 3 } \end{array} \right)\). Describe fully the geometrical transformation represented by \(\mathbf { B }\).
The matrix \(\mathbf { C }\) is given by \(\mathbf { C } = \left( \begin{array} { l l } 2 & 6 0 & 2 \end{array} \right)\).
(a) Draw a diagram showing the unit square and its image under the transformation represented by \(\mathbf { C }\).
(b) Write down the determinant of \(\mathbf { C }\) and explain briefly how this value relates to the transformation represented by \(\mathbf { C }\).
8 The quadratic equation \(2 x ^ { 2 } - x + 3 = 0\) has roots \(\alpha\) and \(\beta\), and the quadratic equation \(x ^ { 2 } - p x + q = 0\) has roots \(\alpha + \frac { 1 } { \alpha }\) and \(\beta + \frac { 1 } { \beta }\).
Show that \(p = \frac { 5 } { 6 }\).
Find the value of \(q\).
9 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { r r r } a & - a & 1 3 & a & 1 4 & 2 & 1 \end{array} \right)\).
Find, in terms of \(a\), the determinant of \(\mathbf { M }\).
Hence find the values of \(a\) for which \(\mathbf { M } ^ { - 1 }\) does not exist.
Determine whether the simultaneous equations
$$\begin{aligned}
& 6 x - 6 y + z = 3 k
& 3 x + 6 y + z = 0
& 4 x + 2 y + z = k
\end{aligned}$$
where \(k\) is a non-zero constant, have a unique solution, no solution or an infinite number of solutions, justifying your answer.
Show that \(\frac { 1 } { r } - \frac { 2 } { r + 1 } + \frac { 1 } { r + 2 } \equiv \frac { 2 } { r ( r + 1 ) ( r + 2 ) }\).
Hence find an expression, in terms of \(n\), for
$$\sum _ { r = 1 } ^ { n } \frac { 2 } { r ( r + 1 ) ( r + 2 ) }$$
Show that \(\sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { ( n + 1 ) ( n + 2 ) }\).
9 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { r r r } a & - a & 1 3 & a & 1 4 & 2 & 1 \end{array} \right)\).
Find, in terms of \(a\), the determinant of \(\mathbf { M }\).
Hence find the values of \(a\) for which \(\mathbf { M } ^ { - 1 }\) does not exist.
Determine whether the simultaneous equations
$$\begin{aligned}
& 6 x - 6 y + z = 3 k
& 3 x + 6 y + z = 0
& 4 x + 2 y + z = k
\end{aligned}$$
where \(k\) is a non-zero constant, have a unique solution, no solution or an infinite number of solutions, justifying your answer.
Show that \(\frac { 1 } { r } - \frac { 2 } { r + 1 } + \frac { 1 } { r + 2 } \equiv \frac { 2 } { r ( r + 1 ) ( r + 2 ) }\).
Hence find an expression, in terms of \(n\), for
$$\sum _ { r = 1 } ^ { n } \frac { 2 } { r ( r + 1 ) ( r + 2 ) }$$
Show that \(\sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { ( n + 1 ) ( n + 2 ) }\).