Solve the equation \(( 1 + 2 \mathrm { i } ) w ^ { 2 } + 4 w - ( 1 - 2 \mathrm { i } ) = 0\), giving your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities \(| z - 1 - \mathrm { i } | \leqslant 2\) and \(- \frac { 1 } { 4 } \pi \leqslant \arg z \leqslant \frac { 1 } { 4 } \pi\).