10 A large field of area \(4 \mathrm {~km} ^ { 2 }\) is becoming infected with a soil disease. At time \(t\) years the area infected is \(x \mathrm {~km} ^ { 2 }\) and the rate of growth of the infected area is given by the differential equation \(\frac { \mathrm { d } x } { \mathrm {~d} t } = k x ( 4 - x )\), where \(k\) is a positive constant. It is given that when \(t = 0 , x = 0.4\) and that when \(t = 2 , x = 2\).
- Solve the differential equation and show that \(k = \frac { 1 } { 4 } \ln 3\).
- Find the value of \(t\) when \(90 \%\) of the area of the field is infected.