CAIE P3 2024 November — Question 8

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2024
SessionNovember
TopicComplex Numbers Argand & Loci

8
  1. Given that \(z = 1 + y \mathrm { i }\) and that \(y\) is a real number, express \(\frac { 1 } { z }\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are functions of \(y\).
  2. Show that \(\left( a - \frac { 1 } { 2 } \right) ^ { 2 } + b ^ { 2 } = \frac { 1 } { 4 }\), where \(a\) and \(b\) are the functions of \(y\) found in part (a).
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-14_2716_35_108_2012}
  3. On a single Argand diagram, sketch the loci given by the equations \(\operatorname { Re } ( z ) = 1\) and \(\left| z - \frac { 1 } { 2 } \right| = \frac { 1 } { 2 }\), where \(z\) is a complex number.
  4. The complex number \(z\) is such that \(\operatorname { Re } ( z ) = 1\). Use your answer to part (b) to give a geometrical description of the locus of \(\frac { 1 } { z }\).