CAIE P3 2024 November — Question 4 5 marks

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2024
SessionNovember
Marks5
TopicReciprocal Trig & Identities

4
  1. Show that \(\sec ^ { 4 } \theta - \tan ^ { 4 } \theta \equiv 1 + 2 \tan ^ { 2 } \theta\).
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-07_2723_35_101_20}
  2. Hence or otherwise solve the equation \(\sec ^ { 4 } 2 \alpha - \tan ^ { 4 } 2 \alpha = 2 \tan ^ { 2 } 2 \alpha \sec ^ { 2 } 2 \alpha\) for \(0 ^ { \circ } < \alpha < 180 ^ { \circ }\). [5]