A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q4
CAIE P3 2024 November — Question 4
5 marks
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2024
Session
November
Marks
5
Topic
Reciprocal Trig & Identities
4
Show that \(\sec ^ { 4 } \theta - \tan ^ { 4 } \theta \equiv 1 + 2 \tan ^ { 2 } \theta\).
\includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-07_2723_35_101_20}
Hence or otherwise solve the equation \(\sec ^ { 4 } 2 \alpha - \tan ^ { 4 } 2 \alpha = 2 \tan ^ { 2 } 2 \alpha \sec ^ { 2 } 2 \alpha\) for \(0 ^ { \circ } < \alpha < 180 ^ { \circ }\). [5]
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
5
Q5
Q6
Q7
Q8
Q9