CAIE P3 (Pure Mathematics 3) 2024 November

Question 1
View details
1 The polynomial \(4 x ^ { 3 } + a x ^ { 2 } + 5 x + b\), where \(a\) and \(b\) are constants, is denoted by \(\mathrm { p } ( x )\). It is given that \(( 2 x + 1 )\) is a factor of \(\mathrm { p } ( x )\). When \(\mathrm { p } ( x )\) is divided by \(( x - 4 )\) the remainder is equal to 3 times the remainder when \(\mathrm { p } ( x )\) is divided by \(( x - 2 )\). Find the values of \(a\) and \(b\).
Question 2
View details
2 Find the exact value of \(\int _ { 1 } ^ { 3 } x ^ { 2 } \ln 3 x \mathrm {~d} x\). Give your answer in the form \(a \ln b + c\), where \(a\) and \(c\) are rational and \(b\) is an integer.
\includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-04_2720_38_105_2010}
Question 3
View details
3 The equation of a curve is \(\ln ( x + y ) = 3 x ^ { 2 } y\).
Find the gradient of the curve at the point \(( 1,0 )\).
Question 4 5 marks
View details
4
  1. Show that \(\sec ^ { 4 } \theta - \tan ^ { 4 } \theta \equiv 1 + 2 \tan ^ { 2 } \theta\).
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-07_2723_35_101_20}
  2. Hence or otherwise solve the equation \(\sec ^ { 4 } 2 \alpha - \tan ^ { 4 } 2 \alpha = 2 \tan ^ { 2 } 2 \alpha \sec ^ { 2 } 2 \alpha\) for \(0 ^ { \circ } < \alpha < 180 ^ { \circ }\). [5]
Question 5
View details
5
  1. By sketching a suitable pair of graphs, show that the equation \(2 + \mathrm { e } ^ { - 0.2 x } = \ln ( 1 + x )\) has only one root.
  2. Show by calculation that this root lies between 7 and 9 .
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-08_2716_40_109_2009}
  3. Use the iterative formula $$x _ { n + 1 } = \exp \left( 2 + \mathrm { e } ^ { - 0.2 x _ { n } } \right) - 1$$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
    \(\left[ \exp ( x ) \right.\) is an alternative notation for \(\left. \mathrm { e } ^ { x } .\right]\)
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-10_481_789_262_639} The diagram shows the curve \(y = \sin 2 x ( 1 + \sin 2 x )\), for \(0 \leqslant x \leqslant \frac { 3 } { 4 } \pi\), and its minimum point \(M\). The shaded region bounded by the curve that lies above the \(x\)-axis and the \(x\)-axis itself is denoted by \(R\).
Question 6
View details
  1. Given that the \(x\)-coordinate of \(M\) lies in the interval \(\frac { 1 } { 2 } \pi < x < \frac { 3 } { 4 } \pi\), find the exact coordinates of \(M\).
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-10_2718_35_107_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-11_2725_35_99_20}
  2. Find the exact area of the region \(R\).
Question 7
View details
7
Let \(f ( x ) = \frac { 5 x ^ { 2 } + 8 x + 5 } { ( 1 + 2 x ) \left( 2 + x ^ { 2 } \right) }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-13_2726_34_97_21}
  2. Hence find the coefficient of \(x ^ { 3 }\) in the expansion of \(\mathrm { f } ( x )\).
Question 8
View details
8
  1. Given that \(z = 1 + y \mathrm { i }\) and that \(y\) is a real number, express \(\frac { 1 } { z }\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are functions of \(y\).
  2. Show that \(\left( a - \frac { 1 } { 2 } \right) ^ { 2 } + b ^ { 2 } = \frac { 1 } { 4 }\), where \(a\) and \(b\) are the functions of \(y\) found in part (a).
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-14_2716_35_108_2012}
  3. On a single Argand diagram, sketch the loci given by the equations \(\operatorname { Re } ( z ) = 1\) and \(\left| z - \frac { 1 } { 2 } \right| = \frac { 1 } { 2 }\), where \(z\) is a complex number.
  4. The complex number \(z\) is such that \(\operatorname { Re } ( z ) = 1\). Use your answer to part (b) to give a geometrical description of the locus of \(\frac { 1 } { z }\).
Question 9
View details
9 The position vector of point \(A\) relative to the origin \(O\) is \(\overrightarrow { O A } = 8 \mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }\).
The line \(l\) passes through \(A\) and is parallel to the vector \(2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k }\).
  1. State a vector equation for \(l\).
  2. The position vector of point \(B\) relative to the origin \(O\) is \(\overrightarrow { O B } = - t \mathbf { i } + 4 t \mathbf { j } + 3 t \mathbf { k }\), where \(t\) is a constant. The line \(l\) also passes through \(B\). Find the value of \(t\).
  3. The line \(m\) has vector equation \(\mathbf { r } = 5 \mathbf { i } - \mathbf { j } + 2 \mathbf { k } + \mu ( a \mathbf { i } - \mathbf { j } + 3 \mathbf { k } )\). The acute angle between the directions of \(l\) and \(m\) is \(\theta\), where \(\cos \theta = \frac { 1 } { \sqrt { 6 } }\).
    Find the possible values of \(a\).
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-18_542_559_251_753} A large cylindrical tank is used to store water. The base of the tank is a circle of radius 4 metres. At time \(t\) minutes, the depth of the water in the tank is \(h\) metres. There is a tap at the bottom of the tank. When the tap is open, water flows out of the tank at a rate proportional to the square root of the volume of water in the tank.
  4. Show that \(\frac { \mathrm { d } h } { \mathrm {~d} t } = - \lambda \sqrt { h }\), where \(\lambda\) is a positive constant.
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-18_2718_42_107_2007}
  5. At time \(t = 0\) the tap is opened. It is given that \(h = 4\) when \(t = 0\) and that \(h = 2.25\) when \(t = 20\). Solve the differential equation to obtain an expression for \(t\) in terms of \(h\), and hence find the time taken to empty the tank.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.