Edexcel FM2 2019 June — Question 6

Exam BoardEdexcel
ModuleFM2 (Further Mechanics 2)
Year2019
SessionJune
TopicSimple Harmonic Motion

  1. The points \(A\) and \(B\) lie on a smooth horizontal surface with \(A B = 4.5 \mathrm {~m}\).
A light elastic string has natural length 1.5 m and modulus of elasticity 15 N . One end of the string is attached to \(A\) and the other end of the string is attached to \(B\). A particle, \(P\), of mass 0.2 kg , is attached to the stretched string so that \(A P B\) is a straight line and \(A P = 1.5 \mathrm {~m}\). The particle rests in equilibrium on the surface. The particle is now moved directly towards \(A\) and is held on the surface so \(A P B\) is a straight line with \(A P = 1 \mathrm {~m}\). The particle is released from rest.
  1. Prove that \(P\) moves with simple harmonic motion.
  2. Find
    1. the maximum speed of \(P\) during the motion,
    2. the maximum acceleration of \(P\) during the motion.
  3. Find the total time, in each complete oscillation of \(P\), for which the speed of \(P\) is greater than \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).