1.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9b995178-a4be-4d5a-95f8-6c2978ff01b3-02_330_662_349_753}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A hemispherical shell of radius \(a\) is fixed with its rim uppermost and horizontal. A small bead, \(B\), is moving with constant angular speed, \(\omega\), in a horizontal circle on the smooth inner surface of the shell. The centre of the path of \(B\) is at a distance \(\frac { 1 } { 4 } a\) vertically below the level of the rim of the hemisphere, as shown in Figure 1.
Find the magnitude of \(\omega\), giving your answer in terms of \(a\) and \(g\).