Edexcel FM2 2019 June — Question 3

Exam BoardEdexcel
ModuleFM2 (Further Mechanics 2)
Year2019
SessionJune
TopicCentre of Mass 2

  1. Numerical (calculator) integration is not acceptable in this question.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9b995178-a4be-4d5a-95f8-6c2978ff01b3-08_547_550_303_753} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The shaded region \(O A B\) in Figure 2 is bounded by the \(x\)-axis, the line with equation \(x = 4\) and the curve with equation \(y = \frac { 1 } { 4 } ( x - 2 ) ^ { 3 } + 2\). The point \(A\) has coordinates (4, 4) and the point \(B\) has coordinates \(( 4,0 )\). A uniform lamina \(L\) has the shape of \(O A B\). The unit of length on both axes is one centimetre. The centre of mass of \(L\) is at the point with coordinates \(( \bar { x } , \bar { y } )\). Given that the area of \(L\) is \(8 \mathrm {~cm} ^ { 2 }\),
  1. show that \(\bar { y } = \frac { 8 } { 7 }\) The lamina is freely suspended from \(A\) and hangs in equilibrium with \(A B\) at an angle \(\theta ^ { \circ }\) to the downward vertical.
  2. Find the value of \(\theta\).