Edexcel FP2 2020 June — Question 5

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2020
SessionJune
TopicComplex Numbers Argand & Loci

  1. A transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by
$$w = \frac { 1 - 3 z } { z + 2 i } \quad z \neq - 2 i$$ The circle with equation \(| z + \mathrm { i } | = 3\) is mapped by \(T\) onto the circle \(C\).
  1. Show that the equation for \(C\) can be written as $$3 | w + 3 | = | 1 + ( 3 - w ) \mathrm { i } |$$
  2. Hence find
    1. a Cartesian equation for \(C\),
    2. the centre and radius of \(C\).