Edexcel FP1 (Further Pure Mathematics 1) 2019 June

Question 1
View details
  1. Use Simpson's rule with 4 intervals to estimate
$$\int _ { 0.4 } ^ { 2 } e ^ { x ^ { 2 } } d x$$
Question 2
View details
  1. Given that \(k\) is a real non-zero constant and that
$$y = x ^ { 3 } \sin k x$$ use Leibnitz's theorem to show that $$\frac { \mathrm { d } ^ { 5 } y } { \mathrm {~d} x ^ { 5 } } = \left( k ^ { 2 } x ^ { 2 } + A \right) k ^ { 3 } x \cos k x + B \left( k ^ { 2 } x ^ { 2 } + C \right) k ^ { 2 } \sin k x$$ where \(A\), \(B\) and \(C\) are integers to be determined.
Question 3
View details
3. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = x - y ^ { 2 }$$
  1. Show that $$\frac { \mathrm { d } ^ { 5 } y } { \mathrm {~d} x ^ { 5 } } = a y \frac { \mathrm {~d} ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } + b \frac { \mathrm {~d} y } { \mathrm {~d} x } \frac { \mathrm {~d} ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } + c \left( \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } \right) ^ { 2 }$$ where \(a\), \(b\) and \(c\) are integers to be determined.
  2. Hence find a series solution, in ascending powers of \(x\) as far as the term in \(x ^ { 5 }\), of the differential equation (I), given that \(y = 1\) at \(x = 0\)
Question 4
View details
  1. The parabola \(C\) has equation
$$y ^ { 2 } = 16 x$$ The distinct points \(P \left( p ^ { 2 } , 4 p \right)\) and \(Q \left( q ^ { 2 } , 4 q \right)\) lie on \(C\), where \(p \neq 0 , q \neq 0\)
The tangent to \(C\) at \(P\) and the tangent to \(C\) at \(Q\) meet at the point \(R ( - 28,6 )\).
Show that the area of triangle \(P Q R\) is 1331
Question 5
View details
5. $$I = \int \frac { 1 } { 4 \cos x - 3 \sin x } \mathrm {~d} x \quad 0 < x < \frac { \pi } { 4 }$$ Use the substitution \(t = \tan \left( \frac { x } { 2 } \right)\) to show that $$I = \frac { 1 } { 5 } \ln \left( \frac { 2 + \tan \left( \frac { x } { 2 } \right) } { 1 - 2 \tan \left( \frac { x } { 2 } \right) } \right) + k$$ where \(k\) is an arbitrary constant.
Question 6
View details
  1. The concentration of a drug in the bloodstream of a patient, \(t\) hours after the drug has been administered, where \(t \leqslant 6\), is modelled by the differential equation
$$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } C } { \mathrm {~d} t ^ { 2 } } - 5 t \frac { \mathrm {~d} C } { \mathrm {~d} t } + 8 C = t ^ { 3 }$$ where \(C\) is measured in micrograms per litre.
  1. Show that the transformation \(t = \mathrm { e } ^ { x }\) transforms equation (I) into the equation $$\frac { \mathrm { d } ^ { 2 } C } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} C } { \mathrm {~d} x } + 8 C = \mathrm { e } ^ { 3 x }$$
  2. Hence find the general solution for the concentration \(C\) at time \(t\) hours. Given that when \(t = 6 , C = 0\) and \(\frac { \mathrm { d } C } { \mathrm {~d} t } = - 36\)
  3. find the maximum concentration of the drug in the bloodstream of the patient.
Question 7
View details
  1. With respect to a fixed origin \(O\), the points \(A\), \(B\) and \(C\) have coordinates \(( 3,4,5 ) , ( 10 , - 1,5 )\) and ( \(4,7 , - 9\) ) respectively.
The plane \(\Pi\) has equation \(4 x - 8 y + z = 2\)
The line segment \(A B\) meets the plane \(\Pi\) at the point \(P\) and the line segment \(B C\) meets the plane \(\Pi\) at the point \(Q\).
  1. Show that, to 3 significant figures, the area of quadrilateral \(A P Q C\) is 38.5 The point \(D\) has coordinates \(( k , 4 , - 1 )\), where \(k\) is a constant.
    Given that the vectors \(\overrightarrow { A B } , \overrightarrow { A C }\) and \(\overrightarrow { A D }\) form three edges of a parallelepiped of volume 226
  2. find the possible values of the constant \(k\).
Question 8
View details
  1. The hyperbola \(H\) has equation
$$\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1$$ The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(P ( 4 \cosh \theta , 3 \sinh \theta )\).
The line \(l _ { 1 }\) meets the \(x\)-axis at the point \(A\).
The line \(l _ { 2 }\) is the tangent to \(H\) at the point \(( 4,0 )\).
The lines \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(B\) and the midpoint of \(A B\) is the point \(M\).
  1. Show that, as \(\theta\) varies, a Cartesian equation for the locus of \(M\) is $$y ^ { 2 } = \frac { 9 ( 4 - x ) } { 4 x } \quad p < x < q$$ where \(p\) and \(q\) are values to be determined. Let \(S\) be the focus of \(H\) that lies on the positive \(x\)-axis.
  2. Show that the distance from \(M\) to \(S\) is greater than 1