Edexcel CP2 2024 June — Question 2

Exam BoardEdexcel
ModuleCP2 (Core Pure 2)
Year2024
SessionJune
TopicTaylor series
TypeInverse functions (inverse trig/hyperbolic)

2. $$f ( x ) = \tanh ^ { - 1 } \left( \frac { 3 - x } { 6 + x } \right) \quad | x | < \frac { 3 } { 2 }$$
  1. Show that $$f ^ { \prime } ( x ) = - \frac { 1 } { 2 x + 3 }$$
  2. Hence determine \(\mathrm { f } ^ { \prime \prime } ( x )\)
  3. Hence show that the Maclaurin series for \(\mathrm { f } ( x )\), up to and including the term in \(x ^ { 2 }\), is $$\ln p + q x + r x ^ { 2 }$$ where \(p , q\) and \(r\) are constants to be determined.