Edexcel CP2 2024 June — Question 5

Exam BoardEdexcel
ModuleCP2 (Core Pure 2)
Year2024
SessionJune
TopicComplex Numbers Argand & Loci

  1. The locus \(C\) is given by
$$| z - 4 | = 4$$ The locus \(D\) is given by $$\arg z = \frac { \pi } { 3 }$$
  1. Sketch, on the same Argand diagram, the locus \(C\) and the locus \(D\) The set of points \(A\) is defined by $$A = \{ z \in \mathbb { C } : | z - 4 | \leqslant 4 \} \cap \left\{ z \in \mathbb { C } : 0 \leqslant \arg z \leqslant \frac { \pi } { 3 } \right\}$$
  2. Show, by shading on your Argand diagram, the set of points \(A\)
  3. Find the area of the region defined by \(A\), giving your answer in the form \(p \pi + q \sqrt { 3 }\) where \(p\) and \(q\) are constants to be determined.