4. A sequence \(\left\{ u _ { n } \right\}\), where \(n \geqslant 0\), satisfies the recurrence relation
$$u _ { n + 1 } = \frac { 3 } { 2 } u _ { n } - 2 n ^ { 2 } - 4 \quad u _ { 0 } = k$$
where \(k\) is an integer.
- Determine an expression for \(u _ { n }\) in terms of \(n\) and \(k\).
(6)
Given that \(u _ { 10 } > 5000\) - determine the minimum possible value of \(k\).
(2)