- A linear transformation \(T : \mathbb { R } ^ { 2 } \rightarrow \mathbb { R } ^ { 2 }\) is represented by the matrix
$$\mathbf { M } = \left( \begin{array} { c c }
5 & 1
k & - 3
\end{array} \right)$$
where \(k\) is a constant.
Given that matrix \(\mathbf { M }\) has a repeated eigenvalue,
- determine
- the value of \(k\)
- the eigenvalue.
- Hence determine a Cartesian equation of the invariant line under \(T\).