Edexcel CP AS 2023 June — Question 6

Exam BoardEdexcel
ModuleCP AS (Core Pure AS)
Year2023
SessionJune
TopicVectors 3D & Lines

  1. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } - 2
    2
    0 \end{array} \right) + \lambda \left( \begin{array} { l } 3
    0
    1 \end{array} \right)\) where \(\lambda\) is a scalar parameter.
The line \(l _ { 2 }\) is parallel to \(\left( \begin{array} { r } 1
2
- 3 \end{array} \right)\)
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular. The plane \(\Pi\) contains the line \(l _ { 1 }\) and is perpendicular to \(\left( \begin{array} { r } 1
    2
    - 3 \end{array} \right)\)
  2. Determine a Cartesian equation of \(\Pi\)
  3. Verify that the point \(A ( 3,1,1 )\) lies on \(\Pi\) Given that
    • the point of intersection of \(\Pi\) and \(l _ { 2 }\) has coordinates \(( 2,3,2 )\)
    • the point \(B ( p , q , r )\) lies on \(l _ { 2 }\)
    • the distance \(A B\) is \(2 \sqrt { 5 }\)
    • \(p , q\) and \(r\) are positive integers
    • determine the coordinates of \(B\).