5. Two smooth spheres \(A\) and \(B\), of equal radii, are moving on a smooth horizontal plane when they collide. Immediately after the collision sphere \(A\) has velocity ( \(- 2 \mathbf { i } - 5 \mathbf { j }\) ) \(\mathrm { ms } ^ { - 1 }\) and sphere \(B\) has velocity \(( \mathbf { i } + 3 \mathbf { j } ) \mathrm { ms } ^ { - 1 }\). When the spheres collide, their line of centres is parallel to the vector \(\mathbf { i }\) and the coefficient of restitution between the spheres is \(\frac { 2 } { 5 }\). Sphere \(A\) has mass 4 kg and sphere \(B\) has mass 2 kg .
- Find the velocity of \(A\) and the velocity of \(B\) immediately before the collision.
After the collision, sphere \(A\) continues to move with velocity ( \(- 2 \mathbf { i } - 5 \mathbf { j }\) ) \(\mathrm { ms } ^ { - 1 }\) until it collides with a smooth vertical wall. The impulse exerted by the wall on \(A\) is \(32 \mathbf { j }\) Ns.
- State whether the wall is parallel to the vector \(\mathbf { i }\) or to the vector \(\mathbf { j }\). Give a reason for your answer.
- Find the speed of \(A\) after the collision with the wall.
- Calculate the loss of kinetic energy caused by the collision of sphere \(A\) with the wall.