3. The diagram below shows a lamina \(A B C D E\) which is made of a uniform material. It consists of a rectangle \(A B D E\) with \(A B = 6 a\) and \(A E = 8 a\), together with an isosceles triangle \(B C D\) with \(B C = D C = 5 a\). A semicircle, with its centre at the midpoint of \(A E\) and radius \(3 a\), is removed from \(A B D E\).
\includegraphics[max width=\textwidth, alt={}, center]{b9c63cb4-d446-4548-be42-e30b10cb4b99-3_606_703_603_680}
- Write down the distance of the centre of mass of the lamina \(A B C D E\) from \(A B\).
- Show that the distance of the centre of mass of the lamina \(A B C D E\) from \(A E\) is \(\frac { 140 } { 40 - 3 \pi } a\).
- The lamina \(A B C D E\) is freely suspended from the point \(D\) and hangs in equilibrium.
- Calculate the angle that \(B D\) makes with the vertical.
- The mass of the lamina is \(M\). When a particle of mass \(k M\) is attached at the point \(C\), the lamina hangs in equilibrium with \(A B\) horizontal. Determine the value of \(k\).