WJEC Further Unit 6 2022 June — Question 2

Exam BoardWJEC
ModuleFurther Unit 6 (Further Unit 6)
Year2022
SessionJune
TopicSimple Harmonic Motion

2. A particle \(P\) moves along the \(x\)-axis such that its position \(x\) metres, after \(t\) seconds, is given by $$x = \sin ( \pi t ) + \sqrt { 3 } \cos ( \pi t )$$
    1. Show that the motion of the particle \(P\) is Simple Harmonic. State the value of \(x\) at the centre of motion.
    2. Show that the period of the motion of \(P\) is 2 s and determine the amplitude. Suppose that another particle \(Q\) is introduced so that it also moves along the \(x\)-axis with Simple Harmonic Motion with centre of motion, \(O\), and period equal to that of particle \(P\). When \(t = 0\), the particle \(Q\) is at \(O\) and when it is \(2 \sqrt { 3 } \mathrm {~m}\) from \(O\) its speed is \(2 \pi \mathrm {~ms} ^ { - 1 }\).
  1. Find the amplitude of particle \(Q\).
  2. Determine the time when particles \(P\) and \(Q\) first meet.