CAIE P3 2020 November — Question 6

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2020
SessionNovember
TopicComplex Numbers Arithmetic
TypeArgument relationships and tangent identities

6 The complex number \(u\) is defined by $$u = \frac { 7 + \mathrm { i } } { 1 - \mathrm { i } }$$
  1. Express \(u\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. Show on a sketch of an Argand diagram the points \(A , B\) and \(C\) representing \(u , 7 + \mathrm { i }\) and \(1 - \mathrm { i }\) respectively.
  3. By considering the arguments of \(7 + \mathrm { i }\) and \(1 - \mathrm { i }\), show that $$\tan ^ { - 1 } \left( \frac { 4 } { 3 } \right) = \tan ^ { - 1 } \left( \frac { 1 } { 7 } \right) + \frac { 1 } { 4 } \pi$$