8 With respect to the origin \(O\), the position vectors of the points \(A , B , C\) and \(D\) are given by
$$\overrightarrow { O A } = \left( \begin{array} { l }
2
1
5
\end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r }
4
- 1
1
\end{array} \right) , \quad \overrightarrow { O C } = \left( \begin{array} { l }
1
1
2
\end{array} \right) \quad \text { and } \quad \overrightarrow { O D } = \left( \begin{array} { l }
3
2
3
\end{array} \right)$$
- Show that \(A B = 2 C D\).
- Find the angle between the directions of \(\overrightarrow { A B }\) and \(\overrightarrow { C D }\).
- Show that the line through \(A\) and \(B\) does not intersect the line through \(C\) and \(D\).