Argument relationships and tangent identities

A question is this type if and only if it uses arguments of complex numbers to prove trigonometric identities involving arctan, typically by considering arg(z₁z₂) = arg(z₁) + arg(z₂).

8 questions

CAIE P3 2014 November Q5
5 The complex numbers \(w\) and \(z\) are defined by \(w = 5 + 3 \mathrm { i }\) and \(z = 4 + \mathrm { i }\).
  1. Express \(\frac { \mathrm { i } w } { z }\) in the form \(x + \mathrm { i } y\), showing all your working and giving the exact values of \(x\) and \(y\).
  2. Find \(w z\) and hence, by considering arguments, show that $$\tan ^ { - 1 } \left( \frac { 3 } { 5 } \right) + \tan ^ { - 1 } \left( \frac { 1 } { 4 } \right) = \frac { 1 } { 4 } \pi$$
CAIE P3 2022 June Q5
5 The complex number \(3 - \mathrm { i }\) is denoted by \(u\).
  1. Show, on an Argand diagram with origin \(O\), the points \(A , B\) and \(C\) representing the complex numbers \(u , u ^ { * }\) and \(u ^ { * } - u\) respectively. State the type of quadrilateral formed by the points \(O , A , B\) and \(C\).
  2. Express \(\frac { u ^ { * } } { u }\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  3. By considering the argument of \(\frac { u ^ { * } } { u }\), or otherwise, prove that \(\tan ^ { - 1 } \left( \frac { 3 } { 4 } \right) = 2 \tan ^ { - 1 } \left( \frac { 1 } { 3 } \right)\).
CAIE P3 2020 November Q6
6 The complex number \(u\) is defined by $$u = \frac { 7 + \mathrm { i } } { 1 - \mathrm { i } }$$
  1. Express \(u\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. Show on a sketch of an Argand diagram the points \(A , B\) and \(C\) representing \(u , 7 + \mathrm { i }\) and \(1 - \mathrm { i }\) respectively.
  3. By considering the arguments of \(7 + \mathrm { i }\) and \(1 - \mathrm { i }\), show that $$\tan ^ { - 1 } \left( \frac { 4 } { 3 } \right) = \tan ^ { - 1 } \left( \frac { 1 } { 7 } \right) + \frac { 1 } { 4 } \pi$$
OCR MEI Paper 3 2021 November Q12
12 Show that \(\beta = \arctan \left( \frac { 1 } { 3 } \right)\), as given in line 15 .
OCR MEI Paper 3 2021 November Q13
13
  1. Use triangle ABE in Fig. C 2 to show that \(\arctan x + \arctan \left( \frac { 1 } { x } \right) = \frac { \pi } { 2 }\), as given in line 29 .
  2. Sketch the graph of \(\mathrm { y } = \arctan \mathrm { x }\).
  3. What property of the arctan function ensures that \(\mathrm { y } > \frac { 1 } { \mathrm { x } } \Rightarrow \arctan y > \arctan \left( \frac { 1 } { \mathrm { x } } \right)\), as given in line 30 ?
OCR MEI Paper 3 Specimen Q14
14 Show that the two values of \(b\) given on line 36 are equivalent.
Edexcel CP2 2021 June Q9
  1. (a) Given that \(| z | < 1\), write down the sum of the infinite series
$$1 + z + z ^ { 2 } + z ^ { 3 } + \ldots$$ (b) Given that \(z = \frac { 1 } { 2 } ( \cos \theta + \mathrm { i } \sin \theta )\),
  1. use the answer to part (a), and de Moivre's theorem or otherwise, to prove that $$\frac { 1 } { 2 } \sin \theta + \frac { 1 } { 4 } \sin 2 \theta + \frac { 1 } { 8 } \sin 3 \theta + \ldots = \frac { 2 \sin \theta } { 5 - 4 \cos \theta }$$
  2. show that the sum of the infinite series \(1 + z + z ^ { 2 } + z ^ { 3 } + \ldots\) cannot be purely imaginary, giving a reason for your answer.
CAIE P3 2012 June Q7
  1. Express \(u\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. Show on a sketch of an Argand diagram the points \(A , B\) and \(C\) representing the complex numbers \(u , 1 + 2 \mathrm { i }\) and \(1 - 3 \mathrm { i }\) respectively.
  3. By considering the arguments of \(1 + 2 \mathrm { i }\) and \(1 - 3 \mathrm { i }\), show that $$\tan ^ { - 1 } 2 + \tan ^ { - 1 } 3 = \frac { 3 } { 4 } \pi$$