OCR MEI Further Numerical Methods 2024 June — Question 6

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2024
SessionJune
TopicSign Change & Interval Methods
TypeNumerical Differentiation Estimates

6 Table 6.1 shows some values of \(x\) and the associated values of a function, \(y = f ( x )\). \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Table 6.1}
\(x\)1.512
\(\mathrm { f } ( x )\)0.8408911.18921
\end{table}
  1. Explain why it is not possible to use the central difference method to calculate an estimate of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) when \(x = 1\).
  2. Use the forward difference method to calculate an estimate of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) when \(x = 1\). A student uses the forward difference method to calculate a series of approximations to \(\frac { \mathrm { dy } } { \mathrm { dx } }\) when \(x = 2\) with different values of the step length, \(h\). These approximations are shown in Table 6.2, together with some further analysis. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Table 6.2}
    \(h\)0.80.40.20.10.050.0250.01250.00625
    approximation0.1304520.1386470.1433810.1459420.1472770.1479590.1483040.148477
    difference0.0081950.0047340.0025610.0013350.0006820.0003450.000173
    ratio0.5776330.5410990.5211860.5107620.5054240.502723
    \end{table}
    1. Explain what the ratios of differences tell you about the order of the method in this case.
    2. Comment on whether this is unusual.
  3. Determine the value of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) when \(x = 2\) as accurately as possible. You must justify the precision quoted.