OCR MEI Further Numerical Methods 2024 June — Question 5

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2024
SessionJune
TopicSign Change & Interval Methods
TypeInterval Bisection from Spreadsheet

5 The root of the equation \(\mathrm { f } ( x ) = 0\) is being found using the method of interval bisection. Some of the associated spreadsheet output is shown in the table below.
1ABCDEF
1af(a)\(b\)f(b)c\(\mathrm { f } ( c )\)
22-0.610936.085542.51.43249
32-0.61092.51.432492.250.17524
42-0.61092.250.175242.125-0.2677
52.125-0.26772.250.175242.1875-0.0598
6
The formula in cell B2 is \(\quad = \mathrm { EXP } ( \mathrm { A } 2 ) - \mathrm { A } 2 ^ { \wedge } 2 - \mathrm { A } 2 - 2\).
  1. Write down the equation whose root is being found.
  2. Write down a suitable formula for cell E2. The formula in cell A3 is $$= \mathrm { IF } ( \mathrm {~F} 2 < 0 , \mathrm { E } 2 , \mathrm {~A} 2 )$$ .
  3. Write down a similar formula for cell C3.
  4. Complete row 6 of the table on the copy in the Printed Answer Booklet.
  5. Without doing any calculations, write down the value of the root correct to the number of decimal places which seems justified. You must explain the precision quoted.
  6. Determine how many more applications of the bisection method are needed such that the interval which contains the root is less than 0.0005 .