OCR MEI Further Numerical Methods 2019 June — Question 6

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2019
SessionJune
TopicFixed Point Iteration

6 The spreadsheet output in Fig. 6 shows approximations to \(\int _ { 0 } ^ { 1 } x ^ { - \sqrt { x } } \mathrm {~d} x\) found using the midpoint rule, denoted by \(M _ { n }\), and the trapezium rule, denoted by \(T _ { n }\). \begin{table}[h]
ABC
1\(n\)\(M _ { n }\)\(T _ { n }\)
211.6325271
321.6414611.316263
441.6230531.478862
581.6102951.550957
6161.6041321.580626
7321.6015051.592379
\captionsetup{labelformat=empty} \caption{Fig. 6}
\end{table}
  1. Write down an efficient spreadsheet formula for cell C3.
  2. By first completing the table in the Printed Answer Booklet using the Simpson's rule, calculate the most accurate estimate of \(\int _ { 0 } ^ { 1 } x ^ { - \sqrt { x } } \mathrm {~d} x\) that you can, justifying the precision quoted. \section*{END OF QUESTION PAPER}