OCR MEI Further Numerical Methods 2019 June — Question 2

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2019
SessionJune
TopicSign Change & Interval Methods
TypeExplain Sign Change Method Failure

2 Fig. 2.1 shows the graph of \(y = x ^ { 2 } \mathrm { e } ^ { 2 x } - 5 x ^ { 2 } + 0.5\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4838f71e-a1d0-4695-89d2-c7ebb47edd77-4_757_545_315_248} \captionsetup{labelformat=empty} \caption{Fig. 2.1}
\end{figure} There are three roots of the equation \(x ^ { 2 } \mathrm { e } ^ { 2 x } - 5 x ^ { 2 } + 0.5 = 0\). The roots are \(\alpha , \beta\) and \(\gamma\), where \(\alpha < \beta < \gamma\).
  1. Explain why it is not possible to use the method of false position with \(x _ { 0 } = 0\) and \(x _ { 1 } = 1\) to find \(\beta\) and \(\gamma\). The graph of the function indicates that the root \(\gamma\) lies in the interval [0.6, 0.8]. Fig. 2.2 shows some spreadsheet output using the method of false position using these values as starting points. \begin{table}[h]
    ABCDEF
    1af(a)bf(b)approx
    20.6-0.104760.80.4699410.636457-0.07876
    30.636457-0.078760.80.4699410.659931-0.04748
    40.659931-0.047480.80.4699410.672783-0.0249
    50.672783-0.02490.80.4699410.679184-0.01211
    60.679184-0.012110.80.4699410.682218-0.00567
    70.682218-0.005670.80.4699410.683623-0.00261
    80.683623-0.002610.80.4699410.684266-0.00119
    90.684266-0.001190.80.4699410.684559-0.00054
    100.684559-0.000540.80.4699410.684692-0.00025
    110.684692-0.000250.80.4699410.684753-0.00011
    120.684753-0.000110.80.4699410.68478\(- 5.1 \mathrm { E } - 05\)
    \captionsetup{labelformat=empty} \caption{Fig. 2.2}
    \end{table}
  2. Without doing any further calculation, write down the smallest possible interval which is certain to contain \(\gamma\).
  3. State what is being calculated in column F. The formula in cell A3 is \(\quad = \operatorname { IF } ( \mathrm { F } 2 < 0 , \mathrm { E } 2 , \mathrm {~A} 2 )\).
  4. Explain the purpose of this formula in the application of the method of false position. The method of false position uses the same formula for obtaining new approximations as the secant method.
  5. Explain how the method of false position differs from the secant method.
  6. Give one advantage and one disadvantage of using the method of false position instead of the secant method.