OCR MEI Further Numerical Methods 2019 June — Question 5

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2019
SessionJune
TopicFixed Point Iteration

5 Fig. 5 shows spreadsheet output concerning the estimation of the derivative of a function \(\mathrm { f } ( x )\) at \(x = 2\) using the forward difference method. \begin{table}[h]
ABCD
1hestimatedifferenceratio
20.16.3050005
30.016.0300512-0.274949
40.0016.0030018-0.0270490.098379
50.00016.0003014-0.00270.099835
60.000016.0000314-0.000270.099983
70.0000016.0000044\(- 2.7 \mathrm { E } - 05\)0.099994
81E-076.0000016\(- 2.71 \mathrm { E } - 06\)0.100352
91E-086.0000013\(- 3.02 \mathrm { E } - 07\)0.111457
101E-096.0000018\(4.885 \mathrm { E } - 07\)-1.61765
111E-106.0000049\(3.109 \mathrm { E } - 06\)6.363636
121E-116.0000005\(- 4.44 \mathrm { E } - 06\)-1.42857
131E-126.00053340.0005329-120
141E-135.9952043-0.005329-10
151E-146.12843110.1332268-25
161E-155.3290705-0.799361-6
171E-160-5.3290716.666667
\captionsetup{labelformat=empty} \caption{Fig. 5}
\end{table}
  1. Write down suitable cell formulae for
    • cell C3,
    • cell D4.
    • Explain what the entries in cells D4 to D8 tell you about the order of the convergence of the forward difference method.
    • Write the entry in cell A10 in standard mathematical notation.
    • Explain what the values displayed in cells D10 to D17 suggest about the values in cells B10 to B16.
    • Write down the value of the derivative of \(\mathrm { f } ( x )\) at \(x = 2\) to an accuracy that seems justified, explaining your answer.
    The formula in cell B2 is \(\quad = ( \mathrm { LN } ( \mathrm { SQRT } ( \mathrm { SINH } ( ( 2 + \mathrm { A } 2 ) \wedge 3 ) ) ) - \mathrm { LN } ( \mathrm { SQRT } ( \mathrm { SINH } ( 2 \wedge 3 ) ) ) ) / \mathrm { A } 2\) and equivalent formulae are entered in cells B3 to B17.
  2. Write \(\mathrm { f } ( x )\) in standard mathematical notation. The value displayed in cell B17 is zero, even though the calculation results in a non-zero answer.
  3. Explain how this has arisen.