A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Argand & Loci
Q2
CAIE P3 2023 March — Question 2
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2023
Session
March
Topic
Complex Numbers Argand & Loci
2
On an Argand diagram, shade the region whose points represent complex numbers \(z\) satisfying the inequalities \(- \frac { 1 } { 3 } \pi \leqslant \arg ( z - 1 - 2 \mathrm { i } ) \leqslant \frac { 1 } { 3 } \pi\) and \(\operatorname { Re } z \leqslant 3\).
Calculate the least value of \(\arg z\) for points in the region from (a). Give your answer in radians correct to 3 decimal places.
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
5
Q9
Q10
Q11