OCR MEI Further Statistics Major 2021 November — Question 10

Exam BoardOCR MEI
ModuleFurther Statistics Major (Further Statistics Major)
Year2021
SessionNovember
TopicContinuous Uniform Random Variables
TypeSum of independent uniforms

10 Sarah takes a bus to work each weekday morning and returns each evening. The times in minutes that she has to wait for the bus in the morning and evening are modelled by uniform distributions over the intervals \([ 0,10 ]\) and \([ 0,6 ]\) respectively. The times in minutes for the bus journeys in the morning and evening are modelled by \(\mathrm { N } ( 25,4 )\) and \(\mathrm { N } ( 28,16 )\) respectively. You should assume that all of the times are independent. The total time in minutes that she takes for her two journeys, including the waiting times, is denoted by the random variable \(T\). The spreadsheet below shows the first 20 rows of a simulation of 500 return journeys. It also shows in column H the numbers of values of \(T\) that are less than or equal to the corresponding values in column G. For example, there are 156 out of the 500 simulated values of \(T\) which are less than or equal to 58 minutes. All of the times have been rounded to 2 decimal places.
ABCDEFGH
1Waiting time morningJourney time morningWaiting time eveningJourney time eveningTotal timeTotal time tNumber \(\leqslant \mathbf { t }\)
20.8920.781.8826.3049.86460
33.5521.241.0429.6155.44484
42.1321.832.4028.6455.005013
55.1225.043.1324.3057.605235
64.0327.492.1930.8164.525457
72.4720.544.3234.6161.9356104
83.2126.933.7827.6661.5858156
99.7224.150.6327.5362.0360218
101.5928.450.0835.8765.9962288
117.3423.044.0224.7759.1764357
121.0424.691.6631.9559.3366408
137.1722.162.5525.3957.2868441
145.2026.972.4130.0564.6270475
155.0126.841.8836.2169.9372490
163.7626.032.2130.9662.9674496
170.9623.722.5529.3656.5976500
188.6424.972.8226.3962.82
190.5920.824.5731.4157.38
209.8523.685.5429.9268.99
01
  1. Use the spreadsheet output to estimate each of the following.
    • \(\mathrm { P } ( T \leqslant 56 )\)
    • \(\mathrm { P } ( T > 61 )\)
    • The random variable \(W\) is Normally distributed with the same mean and variance as \(T\). Find each of the following.
    • \(\mathrm { P } ( W \leqslant 56 )\)
    • \(\mathrm { P } ( W > 61 )\)
    • Explain why, if many more journeys were used in the simulation, you would expect \(\mathrm { P } ( T > 61 )\) to be extremely close to \(\mathrm { P } ( W > 61 )\).