7 An environmental investigator wants to check whether the level of selenium in carrots in fields near a mine is different from the usual level in the country, which is \(9.4 \mathrm { ng } / \mathrm { g }\) (nanograms per gram). She takes a random sample of 10 carrots from fields near the mine and measures the selenium level of each of them in \(\mathrm { ng } / \mathrm { g }\), with results as follows.
\(\begin{array} { l l l l l l l l l l } 6.20 & 10.72 & 11.42 & 16.32 & 15.33 & 10.56 & 8.83 & 9.21 & 7.78 & 14.32 \end{array}\)
- Find estimates of each of the following.
- The population mean
- The population standard deviation
The investigator produces a Normal probability plot and carries out a Kolmogorov-Smirnov test for these data as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{bab116b3-6e5f-44db-ac86-670e4040d649-06_583_1499_959_242} - Comment on what the Normal probability plot and the \(p\)-value of the test suggest about the data.
- State the null hypothesis for the Kolmogorov-Smirnov test for Normality.
- In this question you must show detailed reasoning.
Carry out a test at the \(5 \%\) significance level to investigate whether the mean selenium level in carrots from fields near the mine is different from \(9.4 \mathrm { ng } / \mathrm { g }\).
- If the \(p\)-value of the Kolmogorov-Smirnov test for Normality had been 0.007, explain what procedure you could have used to investigate the selenium level in carrots from fields near the mine.