OCR MEI Further Statistics Minor 2021 November — Question 1

Exam BoardOCR MEI
ModuleFurther Statistics Minor (Further Statistics Minor)
Year2021
SessionNovember
TopicDiscrete Probability Distributions
TypeSimple algebraic expression for P(X=x)

1 The probability distribution of a discrete random variable \(X\) is given by the formula \(\mathrm { P } ( \mathrm { X } = \mathrm { r } ) = \mathrm { k } \left( ( \mathrm { r } - 1 ) ^ { 2 } + 1 \right)\) for \(r = 1,2,3,4,5\).
  1. Show that \(k = \frac { 1 } { 35 }\). The distribution of \(X\) is shown in the table.
    \(r\)12345
    \(\mathrm { P } ( \mathrm { X } = \mathrm { r } )\)\(\frac { 1 } { 35 }\)\(\frac { 2 } { 35 }\)\(\frac { 1 } { 7 }\)\(\frac { 2 } { 7 }\)\(\frac { 17 } { 35 }\)
  2. Comment briefly on the shape of the distribution.
  3. Find each of the following.
    • \(\mathrm { E } ( X )\)
    • \(\operatorname { Var } ( X )\)
    The random variable \(Y\) is given by \(Y = 5 X - 10\).
  4. Find each of the following.
    • \(\mathrm { E } ( Y )\)
    • \(\operatorname { Var } ( Y )\)