1 The probability distribution of a discrete random variable \(X\) is given by the formula \(\mathrm { P } ( \mathrm { X } = \mathrm { r } ) = \mathrm { k } \left( ( \mathrm { r } - 1 ) ^ { 2 } + 1 \right)\) for \(r = 1,2,3,4,5\).
- Show that \(k = \frac { 1 } { 35 }\).
The distribution of \(X\) is shown in the table.
| \(r\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { r } )\) | \(\frac { 1 } { 35 }\) | \(\frac { 2 } { 35 }\) | \(\frac { 1 } { 7 }\) | \(\frac { 2 } { 7 }\) | \(\frac { 17 } { 35 }\) |
- Comment briefly on the shape of the distribution.
- Find each of the following.
- \(\mathrm { E } ( X )\)
- \(\operatorname { Var } ( X )\)
The random variable \(Y\) is given by \(Y = 5 X - 10\). - Find each of the following.
- \(\mathrm { E } ( Y )\)
- \(\operatorname { Var } ( Y )\)