4 A scientist is investigating sea salinity (the level of salt in the sea) in a particular area. She wishes to check whether satellite measurements, \(y\), of salinity are similar to those directly measured, \(x\). Both variables are measured in parts per thousand in suitable units.
The scientist obtains a random sample of 10 values of \(x\) and the related values of \(y\). Below is a screenshot of a scatter diagram to illustrate the data. She decides to carry out a hypothesis test to check if there is any correlation between direct measurement, \(x\), and satellite measurement, \(y\).
\includegraphics[max width=\textwidth, alt={}, center]{691e8b55-e9a1-4fff-b9ee-a71ff1f73ead-5_830_837_589_246}
- Explain why the scientist might decide to carry out a test based on the product moment correlation coefficient.
Summary statistics for \(x\) and \(y\) are as follows.
\(n = 10 \quad \sum x = 351.9 \quad \sum y = 350.0 \quad \sum x ^ { 2 } = 12384.5 \quad \sum y ^ { 2 } = 12251.2 \quad \sum \mathrm { xy } = 12317.2\) - In this question you must show detailed reasoning.
Calculate the product moment correlation coefficient.
- Carry out a hypothesis test at the \(5 \%\) significance level to investigate whether there is positive correlation between directly measured and satellite measured salinity levels.
- Explain why it would be preferable to use a larger sample.
The scientist is also interested in whether there is any correlation between salinity and numbers of a particular species of shrimp in the water. She takes a large sample and finds that the product moment correlation coefficient for this sample is 0.165 . The result of a test based on this sample is to reject the null hypothesis and conclude that there is correlation between salinity and numbers of shrimp.
- Comment on the outcome of the hypothesis test with reference to the effect size of 0.165 .