OCR MEI Further Statistics Minor 2020 November — Question 2

Exam BoardOCR MEI
ModuleFurther Statistics Minor (Further Statistics Minor)
Year2020
SessionNovember
TopicPoisson Distribution
TypeStandard Poisson approximation to binomial

2 On computer monitor screens there are often one or more tiny dots which are permanently dark and do not display any of the image. Such dots are known as 'dead pixels'. Dead pixels occur on screens randomly and independently of each other. A company manufactures three types of monitor, Types A, B and C. For a monitor of Type A, the screen has a total of 2304000 pixels. For this type of monitor, the probability of a randomly chosen pixel being dead is 1 in 500000 . Let \(X\) represent the number of dead pixels on a monitor screen of this type.
  1. Explain why you could use either a binomial distribution or a Poisson distribution to model the distribution of \(X\).
  2. Use a Poisson distribution to calculate estimates of each of the following probabilities.
    • \(\mathrm { P } ( X = 4 )\)
    • \(\mathrm { P } ( X > 4 )\)
    • In this question you must show detailed reasoning.
    For a monitor of Type B, the probability of a randomly chosen pixel being dead is also 1 in 500 000. The screen of a monitor of Type B has a total of \(n\) pixels. Use a binomial distribution to find the least value of \(n\) for which the probability of finding at least 1 dead pixel is greater than 0.99 . Give your answer in millions correct to 3 significant figures. For a monitor of Type C, the number of dead pixels on the screen is modelled by a Poisson distribution with mean \(\lambda\).
  3. Given that the probability of finding at least one dead pixel is 0.8 , find \(\lambda\).