Standard Poisson approximation to binomial

Questions that ask to use Poisson approximation to approximate a binomial distribution B(n,p) where n is large and p is small, with straightforward probability calculations.

7 questions

CAIE S2 2020 March Q1
1 The booklets produced by a certain publisher contain, on average, 1 incorrect letter per 30000 letters, and these errors occur randomly. A randomly chosen booklet from this publisher contains 12500 letters. Use a suitable approximating distribution to find the probability that this booklet contains at least 2 errors.
CAIE S2 2019 June Q7
7 All the seats on a certain daily flight are always sold. The number of passengers who have bought seats but fail to arrive for this flight on a particular day is modelled by the distribution \(\mathbf { B } ( 320,0.005 )\).
  1. Explain what the number 320 represents in this context.
  2. The total number of passengers who have bought seats but fail to arrive for this flight on 2 randomly chosen days is denoted by \(X\). Use a suitable approximating distribution to find \(\mathrm { P } ( 2 < X < 6 )\).
  3. Justify the use of your approximating distribution.
    After some changes, the airline wishes to test whether the mean number of passengers per day who fail to arrive for this flight has decreased.
  4. During 5 randomly chosen days, a total of 2 passengers failed to arrive. Carry out the test at the 2.5\% significance level.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE S2 2019 June Q7
7 Each day at a certain doctor's surgery there are 70 appointments available in the morning and 60 in the afternoon. All the appointments are filled every day. The probability that any patient misses a particular morning appointment is 0.04 , and the probability that any patient misses a particular afternoon appointment is 0.05 . All missed appointments are independent of each other. Use suitable approximating distributions to answer the following.
  1. Find the probability that on a randomly chosen morning there are at least 3 missed appointments.
  2. Find the probability that on a randomly chosen day there are a total of exactly 6 missed appointments.
  3. Find the probability that in a randomly chosen 10-day period there are more than 50 missed appointments.
CAIE S2 2024 March Q3
3 In a certain lottery, on average 1 in every 10000 tickets is a prize-winning ticket. An agent sells 6000 tickets.
  1. Use a suitable approximating distribution to find the probability that at least 3 of the tickets sold by the agent are prize-winning tickets.
  2. Justify the use of your approximating distribution in this context.
CAIE S2 2020 November Q1
1 On average, 1 in 50000 people have a certain gene.
Use a suitable approximating distribution to find the probability that more than 2 people in a random sample of 150000 have the gene.
CAIE S2 2013 November Q1
1 Each computer made in a factory contains 1000 components. On average, 1 in 30000 of these components is defective. Use a suitable approximate distribution to find the probability that a randomly chosen computer contains at least 1 faulty component.
OCR MEI Further Statistics Minor 2020 November Q2
2 On computer monitor screens there are often one or more tiny dots which are permanently dark and do not display any of the image. Such dots are known as 'dead pixels'. Dead pixels occur on screens randomly and independently of each other. A company manufactures three types of monitor, Types A, B and C. For a monitor of Type A, the screen has a total of 2304000 pixels. For this type of monitor, the probability of a randomly chosen pixel being dead is 1 in 500000 . Let \(X\) represent the number of dead pixels on a monitor screen of this type.
  1. Explain why you could use either a binomial distribution or a Poisson distribution to model the distribution of \(X\).
  2. Use a Poisson distribution to calculate estimates of each of the following probabilities.
    • \(\mathrm { P } ( X = 4 )\)
    • \(\mathrm { P } ( X > 4 )\)
    • In this question you must show detailed reasoning.
    For a monitor of Type B, the probability of a randomly chosen pixel being dead is also 1 in 500 000. The screen of a monitor of Type B has a total of \(n\) pixels. Use a binomial distribution to find the least value of \(n\) for which the probability of finding at least 1 dead pixel is greater than 0.99 . Give your answer in millions correct to 3 significant figures. For a monitor of Type C, the number of dead pixels on the screen is modelled by a Poisson distribution with mean \(\lambda\).
  3. Given that the probability of finding at least one dead pixel is 0.8 , find \(\lambda\).