OCR MEI Further Statistics Minor 2023 June — Question 3

Exam BoardOCR MEI
ModuleFurther Statistics Minor (Further Statistics Minor)
Year2023
SessionJune
TopicDiscrete Probability Distributions
TypeVerify probability from combinatorial selection

3 A fair four-sided dice has its faces numbered \(0,1,2,3\). The dice is rolled three times. The discrete random variable \(X\) is the sum of the lowest and highest scores obtained.
  1. Show that \(\mathrm { P } ( X = 1 ) = \frac { 3 } { 32 }\). The table below shows the probability distribution of \(X\).
    \(r\)0123456
    \(\mathrm { P } ( X = r )\)\(\frac { 1 } { 64 }\)\(\frac { 3 } { 32 }\)\(\frac { 13 } { 64 }\)\(\frac { 3 } { 8 }\)\(\frac { 13 } { 64 }\)\(\frac { 3 } { 32 }\)\(\frac { 1 } { 64 }\)
  2. In this question you must show detailed reasoning. Find each of the following.
    • \(\mathrm { E } ( X )\)
    • \(\operatorname { Var } ( X )\)
    • The random variable \(Y\) represents the sum of 10 values of \(X\).
      1. State a property of the 10 values of \(X\) that would make it possible to deduce the standard deviation of \(Y\).
      2. Given that this property holds, determine the standard deviation of \(Y\).