Questions where the probability is calculated from selecting items without replacement from a finite collection, requiring combinations or systematic enumeration of outcomes.
9 questions
| \(r\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = r )\) | 0 | \(\frac { 4 } { 35 }\) | \(\frac { 18 } { 35 }\) | \(\frac { 12 } { 35 }\) | \(\frac { 1 } { 35 }\) |
| \(r\) | 10 | 15 | 20 | 25 | 30 |
| \(\mathrm { P } ( X = r )\) | 0.1 | 0.4 | 0.1 | 0.2 | 0.2 |
| \(r\) | 15 | 1010 | 2005 | 3000 |
| \(\mathrm { P } ( X = r )\) | 0.05 | 0.45 | 0.45 | 0.05 |
| \(r\) | 3 | 4 | 5 | 6 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { r } )\) | \(\frac { 1 } { 6 }\) | \(\frac { 1 } { 2 }\) | \(\frac { 3 } { 10 }\) | \(\frac { 1 } { 30 }\) |
| \(r\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| \(\mathrm { P } ( X = r )\) | \(\frac { 1 } { 64 }\) | \(\frac { 3 } { 32 }\) | \(\frac { 13 } { 64 }\) | \(\frac { 3 } { 8 }\) | \(\frac { 13 } { 64 }\) | \(\frac { 3 } { 32 }\) | \(\frac { 1 } { 64 }\) |
| \(r\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = r )\) | \(\frac { 1 } { 14 }\) | \(\frac { 8 } { 21 }\) | \(\frac { 3 } { 7 }\) | \(\frac { 4 } { 35 }\) | \(\frac { 1 } { 210 }\) |
| \(r\) | 0 | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( \mathrm { X } = \mathrm { r } )\) | \(\frac { 1 } { 36 }\) | \(\frac { 5 } { 36 }\) | \(\frac { 2 } { 9 }\) | \(\frac { 1 } { 4 }\) | \(\frac { 2 } { 9 }\) | \(\frac { 5 } { 36 }\) |
| \(m\) | 4 | 5 | 6 | 7 | 8 |
| \(P ( M = m )\) | \(\frac { 1 } { 15 }\) | \(\frac { 4 } { 15 }\) | \(\frac { 1 } { 3 }\) | \(\frac { 4 } { 15 }\) | \(\frac { 1 } { 15 }\) |
| \(m\) | 4 | 5 | 6 | 7 | 8 |
| \(P ( M = m )\) | \(\frac { 1 } { 15 }\) | \(\frac { 4 } { 15 }\) | \(\frac { 1 } { 3 }\) | \(\frac { 4 } { 15 }\) | \(\frac { 1 } { 15 }\) |